WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Veralgemeende stelling Stokes

De veralgemeende stelling van Stokes zegt dat: Als X een compacte, georiënteerde variëteit is met rand. Stel w een k-1 vorm is dan geldt dat de $\smallint $ dw= $\smallint $ w waarbij de eerste integraal over X en de 2de over rand van X. Ik probeer nu te begrijpen waarom compactheid een nodige voorwaarde is, ik dacht om X=(0,1) te nemen wat niet compact is en f(x)=x op (0,1). Dan is $\smallint $ f'= $\smallint $ 1=1 (integraal is van 0 tot 1) maar $\smallint $ x=0, want de rand is leeg. Is deze redenering juist? Alvast bedankt!

Rafik
17-5-2023

Antwoord

De compactheid is voornamelijk daar om te garanderen dat de integralen bestaan: als de variëteit niet compact is kun je er onbegrensde differentiaalvormen op definiëren waarvan de integraal niet bestaat. Bijvoorbeeld $\frac1x$ op $(0,1)$.

kphart
18-5-2023


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#97734 - Integreren - Student universiteit België