WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Vergelijkingen met sinus, cosinus en tangens

Ik weet niet hoe ik deze twee vragen oplos. Ik denk dat je iets met de verdubbelingsformules moet doen, maar weet niet wat. Kan iemand me helpen?

Tom Dijkers
17-12-2021

Antwoord

In 't algemeen geldt:

$
\cos (2x) = 2\cos ^2 (x) - 1
$

Dus:

$
\eqalign{
& \cos (4x) = 2\cos ^2 (2x) - 1 \cr
& \cos (4x) = 2\left( {\cos (2x)} \right)^2 - 1 \cr
& \cos (4x) = 2\left( {2\cos ^2 (x) - 1} \right)^2 - 1 \cr
& ... \cr}
$

...en dan verder uitwerken.

Evenzo:

$
\eqalign{
& \frac{{\sin (2x)}}
{{1 + \cos (2x)}} = \cr
& \frac{{2\sin (x)\cos (x)}}
{{1 + 2\cos ^2 (x) - 1}} = \cr
& \frac{{2\sin (x)\cos (x)}}
{{2\cos ^2 (x)}} = \cr
& ... \cr}
$

...en dan verder uitwerken. Het idee was goed. Lukt dat zo?

WvR
17-12-2021


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#93088 - Goniometrie - Leerling bovenbouw havo-vwo