WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Minimum aantonen

Zij f:R2$\to$R een functie met continue partiële afgeleiden minstens tot de tweede orde. Veronderstel dat D1f(0,0)=2 en D2f(0,0)=3. Beschouw nu de functie g: R2$\to$R:(x,y)$\to$ f(x2-y2,x2+y2+xy).Ik veronderstel dat ik de functie g moet afleiden, maar vind dit een beetje moeilijk. Hoe moet ik zo een functie afleiden?

Alvast bedankt voor de hulp!

Jade Lemoine
30-4-2021

Antwoord

Schrijf $u=x^2-y^2$ en $v=x^2+y^2+xy$, en pas de kettingregel toe, bijvoorbeeld
$$\frac{\partial g}{\partial x}=D_1f(u,v)\cdot\frac{\partial u}{\partial x} + D_2f(u,v)\cdot\frac{\partial v}{\partial x}
$$

kphart
2-5-2021


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#92107 - Differentiëren - Student universiteit België