WisFaq!

\require{AMSmath} geprint op woensdag 4 augustus 2021

Raaklijn

Op een hyperbool A nemen we een willekeurig punt D. De raaklijn in D aan H snijdt de asymptoten in E en E2. Bewijs dat D het midden is van EE2. Beste kan u aub mij helpen met deze vraag oplossen.

Ayesha
29-4-2021

Antwoord

We gaan uit van een hyperbool $\eqalign{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}$.
De asymptoten zijn $\eqalign{y=\pm\frac{b}{a}x}$.
Laten we $D(p,q)$ als co÷rdinaten nemen.

De raaklijn aan $D$ is $\eqalign{\frac{px}{a^2}-\frac{qy}{b^2}=1}$, ofwel
$$b^2px-a^2qy=a^2b^2. \,\, [1]$$Substitueren we $y=\frac{b}{a}x$ in [1] dan geeft dat
$$b^2px-a^2q\frac{b}{a}x=a^2b^2$$dus
$$b^2px-abqx=a^2b^2$$$$(bp-aq)x=a^2b$$$$x=\frac{a^2b}{bp-aq}.$$De $x-$co÷rdinaat van het snijpunt met de asymptoot $y=-\frac{b}{a}x$ gaat op dezelfde manier en wordt
$$x=\frac{a^2b}{bp+aq}.$$Het gemiddelde van deze twee $x-$co÷rdinaten is .... $p$! En we hebben het gevraagde bewijs. Het rekenwerk voor de laatste stap laat ik aan jou over. Mocht je daarbij nog hulp nodig hebben, dan hoor ik het graag.

Met vriendelijke groet,

FvL
30-4-2021


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#92087 - Bewijzen - 3de graad ASO