WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Re: Vraagstuk optimalisatie met cilinder

Als ik dit invul in de totale kostenfunctie krijg ik: 1,5πr2+πr/(πr2). Als ik dit verder uitwerk kom ik uiteindelijk op 2,5πr3/r, maar als ik dit wil afleiden om nulpunten te zoeken, hoe moet ik dat dan doen want daar loop ik vaak vast

Alvast bedankt voor de hulp!

Jade Lemoine
23-4-2021

Antwoord

Nee dit gaat niet goed op deze manier. Die twee termen zijn niet gelijksoortig wat betreft de machten en kan je bij het optellen dus nooit samen nemen.

Stap 2: In het tweede deel van de kostenfunctie kan je een hoop weg delen dan blijft over TK = 1,5·$\pi$·r2 + 1/r ofwel TK = 1,5·$\pi$·r2 + r-1
Afgeleide 0 stellen: TK' = 3·$\pi$·r - r-2 = 0 ofwel 3·$\pi$·r - 1/r2 = 0
Omdat r>0 mag je voor het oplossen alles met r2 vermenigvuldigen.
Dus 3·$\pi$·r3 - 1 = 0. Dit oplossen en tekenoverzicht maken levert r op.
Daarmee kan je vervolgens de h berekenen en de gevraagde verhouding.

Met vriendelijke groet
JaDeX

jadex
23-4-2021


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#92033 - Differentiëren - Student universiteit België