WisFaq!

\require{AMSmath} geprint op donderdag 13 mei 2021

Re: Re: Normale verdeling

Met de applet snap ik het. Alleen tijdens moet examens mag ik geen grafische rekenmachine gebruiken of een app zoals hier boven.

Het eerste deel van de formule snap ik. M/s = 56/4.5 = 0.091.

Maar het 2de deel. ? 4.5 / 0.91 = 49.45? Wordt dit zo bedoelt ?

Elijah Blue Vonk
25-2-2021

Antwoord

Voor berekeningen zonder applet of GR gebruik je de standaard normale verdeling en een tabel. Ik neem aan dat je een tabel tot je beschikking hebt.

Bereken eerst de z-score:

$
\eqalign{z = {{50 - 56} \over {4,5}} \approx - 1,333}
$

Zoek in de tabel de waarde voor z=1,333.

q91614img1.gif

In de tabel staan alleen de waarden van de bovenste helft met de oppervlakte rechts van de gegeven $z$-waarde. Dat is allemaal niet zo'n probleem omdat de curve symmetrisch is.

P(x$>$1,333)=0,091 dus P(x$<$-1,333)=0,091
P(x$>$50)=0,909 oftewel ongeveer 91%.

Er is mee over te zeggen en er zitten hier en daar nog wat haken en ogen aan. Je kunt meer vinden over normale verdeling in de Lesbrief de normale verdeling

Zou dat lukken?

Naschrift
De waarde $
\phi (1,333) \approx 0,091
$ kan je berekenen door interpolatie.

$
\eqalign{
& \phi (1,33) = 0,0918 \cr
& \phi (1,34) = 0,0901 \cr
& \phi (1,333) = 0,0918 + 0,003 \cdot {{0,0901 - 0,0918} \over {1,34 - 1,33}} \cr
& \phi (1,333) \approx 0,091 \cr}
$

Wat dat betreft is een GR of een applet wel een stuk handiger.

WvR
25-2-2021


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#91614 - Kansverdelingen - Leerling mbo