WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Re: Limiet bepalen

Zou het ook op een andere manier kunnen?

Max
28-4-2019

Antwoord

's Kijken of het ook zonder l'Hopital kan:

$
\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{2x}}
{{\root 3 \of {x + 27} - 3}} = \cr
& Neem\,\,y = \root 3 \of {x + 27} \to x = y^3 - 27 \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{2x}}
{{\root 3 \of {x + 27} - 3}} = \cr
& \mathop {\lim }\limits_{y \to 3} \frac{{2\left( {y^3 - 27} \right)}}
{{y - 3}} = \cr
& \mathop {\lim }\limits_{y \to 3} 2y^2 + 6y + 18 = 54 \cr}
$

Dat kan. Helpt dat?

WvR
28-4-2019


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87964 - Limieten - Student universiteit