WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Wat wordt bedoeld met de ruimte opspannen?

Een basis voor een vectorruimte is een rij van vectoren met de volgende eigenschappen:

1) de basisvectoren zijn lineair onafhankelijk en
2) de basisvectoren spannen de ruimte op.

Wat wordt er bedoeld met de 2e eigenschap??

Gobbaerts Hanna
12-1-2019

Antwoord

Dat je met een lineaire combinatie van de vectoren uit die basis elke vector van de ruimte kunt verkrijgen. Meer formeel:
Span$\{v_1,\dots,v_n\}=V$ $\Leftrightarrow \forall v \in V: \exists a_1,a_2,\dots,a_n$ zodat $v=a_1 v_1 + a_2 v_2 + \dots +a_n v_n$.
Voorbeeld: de vectoren $(0,1)$ en $(1,0)$ spannen $\mathbb{R^2}$ op want alle vectoren $(a,b)$ uit $\mathbb{R^2}$ kun je schrijven als een lineaire combinatie van $(0,1)$ en $(1,0)$: $(a,b)=a(1,0)+b(0,1)$.

Duidelijker zo?

js2
12-1-2019


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87455 - Lineaire algebra - Student universiteit België