WisFaq!

geprint op dinsdag 18 juni 2019

DifferentiequotiŽnt

Hi,
Het is lastig om de afgeleide te vinden voor f(x)=1/2x3 het differentiequotiŽnt
(f(x+h)-f(x))/h

Ik kom uit op:
{1/2(x+h)3'-1/2x3}/h ik kan deze niet uitwerken omdat ik ergens een h mis en de limiet niet kan nemen....

Mboudd
10-1-2019


Antwoord

Dat gaat zo:

$
\eqalign{
& f(x) = \frac{1}
{2}x^3 \cr
& f'(x) = \mathop {\lim }\limits_{h \Rightarrow 0} \frac{{f(x + h) - f(x)}}
{h} \cr
& f'(x) = \mathop {\lim }\limits_{h \Rightarrow 0} \frac{{\frac{1}
{2}\left( {x + h} \right)^3 - \frac{1}
{2}x^3 }}
{h} \cr
& f'(x) = \mathop {\lim }\limits_{h \Rightarrow 0} \frac{{\frac{1}
{2}\left( {x^3 + 3x^2 h + 3xh^2 + h^3 } \right) - \frac{1}
{2}x^3 }}
{h} \cr}
$

Zou het dan lukken?

WvR
10-1-2019


© 2001-2019 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87435 - DifferentiŽren - Leerling mbo