WisFaq!

\require{AMSmath} geprint op dinsdag 15 juni 2021

Directe formule vinden van een ingewikkelde reeks

Ik ben al uren bezig met het vinden van een directe formule voor een specifieke reeks, maar ik kom niet tot een uitwerking. Ik heb wel via WolframAlpha een antwoord gevonden, maar het gaat mij niet om het antwoord. Juist om de uitwerking. Het gaat om de formule:

U(n)=0,8·U(n-1)+(15000+1000(n-1))/(30·1,05n-1) met U(0)=5000.

Ik heb het geprobeerd met U(n-1)=0,8·U(n-2)+(15000+1000(n-2))/(30·1,05n-2) en daarin U(n-2) te vervangen door hetzelfde met U(n-3) en dan een patroon te herkennen en dat met wat rekenwerk en een sommatie op te lossen. Alleen dat is dus bij deze niet gelukt.

Hoe zou ik dit kunnen oplossen? (sorry dat mijn formules er niet mooi uit zien, ik kreeg het niet netjes)

Hopelijk kunnen jullie helpen!

René Bruin
17-11-2018

Antwoord

Dit is een lineaire recurrente betrekking en daar zijn standaard oplosmethoden voor, zie de link hieronder.

Stap 1: los de bijbehorende homogene vergelijking op: $u_n=0{,}8u_{n-1}$. Dat is niet moeilijk: $u_n=c\cdot0{,}8^n$ voor een constante $c$.
Stap 2: bepaal één particuliere oplossing, $v_n$, van het probleem.
Stap 3: de algemene oplossing is nu $v_n+c0{,}8^n$
Stap 4: de beginvoorwaarde geeft $5000=v_0+c$, daaruit kun je $c$ bepalen.

Voor stap 2: probeer een oplossing van vorm $v_n=A\cdot n\left(\frac1{1{,}05}\right)^n + B\cdot\left(\frac1{1{,}05}\right)^n$; vul dat in en na wat werk kun je $A$ en $B$ bepalen.

Zie TU Delft OCW: Recurrente betrekkingen [https://ocw.tudelft.nl/courses/caleidoscoop/subjects/recurrente-betrekkingen/]

kphart
19-11-2018


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87134 - Rijen en reeksen - Student hbo