WisFaq!

geprint op zondag 15 september 2019

Primitiveren

Hoi,

Ik ben bezig met het primitiveren van deze functie: $f(x)= \sin(x\sqrt 2)$. Ik kom zelf uit op $g(x)=-\cos(x\sqrt 2)$, maar dit klopt niet. Het juiste antwoord is $-\frac 12 \sqrt 2 \cos(x\sqrt 2)$. Ik snap niet hoe ze op de $-\frac 12 \sqrt 2$ ervoor komen?

sahar
28-1-2018


Antwoord

Hoi Sahar,

Denk eens andersom: als je $g(x)=-\cos(x\sqrt 2)$ gaat differenti๋ren, dan moet je de kettingregel gebruiken. Tussen haakjes staat immers niet gewoon $x$, maar $x\sqrt 2$.

De afgeleide wordt daarmee $g'(x)= \sin(x\sqrt 2)\cdot\sqrt 2$. Dat scheelt een factor $\sqrt 2$ met $f(x)$. Om die factor te 'neutraliseren' zetten we er bij de primitieve van $f(x)$ dus een factor $\frac{1}{\sqrt 2} = \frac 12 \sqrt 2$ voor. De min stond er al. Zo komt men op het antwoord.

Met vriendelijke groet,

FvL
29-1-2018


© 2001-2019 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#85633 - Integreren - Student universiteit