WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Een punt zoeken in een vlak

Zoek een punt P in het vlak a: x+3y+z=0 dat op gelijke afstanden ligt van de punten P1(1,1,1) P2(0,2,1) en P3(2,1,2).

Kan iemand me hierbij helpen?

Alvast bedankt!

Livio Luyten
12-11-2017

Antwoord

De punten die evenver van $(1,1,1)$ en $(0,2,1)$ liggen vormen een vlak; en de punten die evenver van $(0,2,1)$ en $(2,1,2)$ liggen ook. Je moet dus de snijpunt(en) van die drie vlakken bepalen.
Je kunt een vergelijking van het eerste vlak door de verschilvector $(1,1,1)-(0,2,1)$ als normaalvector te nemen, dat is dus $(1,-1,0)$; verder ligt het punt $\frac12(1,1,1)+\frac12(0,2,1)=(\frac12,\frac32,0)$ op dat vlak. Je krijgt deze vergelijking: $x-y=-1$.

(Je kunt ook (de kwadraten van) de afstanden van $(x,y,z)$ tot $(1,1,1)$ en tot $(0,2,1)$ aan elkaar gelijk stellen: $(x-1)^2+(y-1)^2+(z-1)^2=(x-0)^2+y-2)^2+(z-1)^2$, na vereenvoudiging krijg je een vergelijking.)

Doe hetzelfde voor het tweede vlak.

Zie Ruimtemeetkunde: afstanden [http://www.wisfaq.nl/show3archive.asp?id=63294]

kphart
12-11-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#85217 - Lineaire algebra - Student universiteit België