Goede avond,
Volgende DV dient zich aan voor mij en ik kan er niet ver mee komen om deze via het Bernouilli systeem op te lossen.
2dx/dy-x/y+x3.cosy=0
Ik probeer even verder te geraken ( .dy)
2dx-xdy/y+x3cosy.dy=0 (:dx)
2-(x/y)dy/dx+x3 cosy.(dy/dx)=0
2-(x/y-x3cosy)(dy/dx)=0 (met dy/dx=y' als U dat verkiest)
Nu krijg ik als hint om v=-2 om in de Bernouilli schrijfwijze te komen.
Maar de vergelijking in die vorm te krijgen is moeilijk....
(dy/dx)+P(x).y=Q(x) met Q(x) alleen afhankelijk van x.
Daarvoor graag wat hulp als het kan....
Vriendelijke groeten
Rik Lemmens
10-12-2016
Je kunt het beste de differentiaalvergelijking zo laten staan en $x$ als functie van $y$ beschouwen, dan staat hij al in de goede vorm:
$$
2x'-\frac1yx=-x^3\cos y
$$
Delen door $x^3$ en dan $w=x^{-2}$ substitueren leidt tot
$$
-w'-\frac1yw=-\cos y
$$
Zie Wikipedie: Bernoulli differential equation [https://en.wikipedia.org/wiki/Bernoulli_differential_equation]
kphart
10-12-2016
#83459 - Differentiaalvergelijking - Iets anders