Bepaal het minimum en maximum van de functie:
-x2+4x+12 op het interval [0;5]
ik zou hier de f'(x) gaan berekenen dus = -2x+4 x=2 > 0 dus stijgend
f''(x) = -2 < 0 dus vertraagd stijgend
Maar hoe bepaald ik het minimum en maximum?
Door b2-4ac ? of -b/2a ?
Alvast bedankt voor de tipglenn
29-11-2016
Beste Glenn,
Met de afgeleide spoor je de extrema op in het open interval ]0,5[ en daar vind je inderdaad dat de afgeleide 0 wordt in x = 2; de maximale/minimale waarde is niet 2, maar de functiewaarde f(2).
Of dit een minimum of een maximum is kan je bijvoorbeeld zien aan het tekenverloop van de eerste afgeleide, of op basis van de tweede afgeleide of omdat je de eigenschappen van een parabool kent.
Let op: er wordt naar de minima en maxima op het gesloten interval [0,5] gevraagd, dus je moet ook de functiewaarden op de rand controleren. Bereken f(0) en f(5) en vergelijk deze; je vindt zo mogelijk nog een minimum of maximum.
mvg,
Tom
td
29-11-2016
#83390 - Functies en grafieken - Student universiteit België