WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Oefening afgeleide...

Ik heb moeite met het oplossen van dit vraagstuk: "Een ballon, waarvan wordt verondersteld dat hij voortdurend een bolvorm bezit en aanvankelijk leeg is, wordt met helium gevuld aan een debiet van 2 kubieke decimeter per seconde. Bepaal de ogenblikkelijke toename van de diameter van de ballon op het ogenblik dat de diameter gelijk is aan 1 meter."

Wat ik heb gedaan is: het debiet, D(t), gelijkstellen aan de verandering in volume gedeeld door de verandering in tijd, dus dan krijg je deze formule: D(t)=delta V/delta t. Dit heb ik omgevormd, om het volume apart te plaatsen: delta V = D(t)·delta t = 2·10-3m3/s·delta t. Vanaf hier weet ik niet meer wat te doen. Dit is een oefening behorend bij een hoofdstuk over afgeleiden, dus je zal die hoogstwaarscheinlijk nodig hebben in deze oefening, maar ik zie niet waar.

Alvast bedankt voor de hulp!

Ibrahim
18-9-2016

Antwoord

Het is een oefening voor de kettingregel denk ik. Je begin is goed, er geldt inderdaad $V'(t)=D(t)=2$. Wat je nog moet doen is $V(t)$ en $d(t)$ (de diameter) met elkaar verbinden; gebruik $V=\frac43\pi r^3$, waar $r$ de straal is, dus $r=\frac12d$, en dus $V=\frac16\pi d^3$. De kettingregel geeft
$$
V'(t)=\frac12\pi d(t)^2\times d'(t)
$$Nu kun je alles invullen en $d'(t)$ voor jouw tijdstip $t$ bepalen.

kphart
19-9-2016


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#82919 - Differentiëren - Student universiteit België