WisFaq!

\require{AMSmath} geprint op vrijdag 2 oktober 2020

Bijzondere constructie van een trapezium

Opgave: Construeer een trapezium waarvan gegeven zijn, de lengte van de diagonalen $AC=d_1$ en $BD=d_2$, de ingesloten hoek $\alpha$ van $d_1$ en $d_2$ (bijv. de scherpe hoek) alsook een zijde.

Mijn bevindingen: Kies $AD$ als gegeven zijde en teken dan de cirkel $(K)$ van waaruit men de zijde $AD$ onder een hoek $\alpha$ kan zien. Kies dan bijv. het punt $E$ gelegen op $(K)$, waarvoor geldt $\angle AED=\alpha$. Verleng dan $AE$ resp. $DE$, zodanig dat $AEC=AC=d_2$ en $DEB=DB=d_1$.
Ik teken dan de cirkel $K1(D,DB=d_1)$ resp. de cirkel
$K2(A,AC=d_2)$. Op deze 2 laatste cirkels ligt zeker het hoekpunt $B$ resp. het hoekpunt $C$ van het gevraagde trapezium.
Vaststelling: Bij een gegeven punt $E$ gelegen op $(K)$, stelt men vast dat $AB$ en $CD$ NIET evenwijdig zijn.
Kies je dan enkele punten $E'$, $E''$,... op $(K)$ dan stelde ik vast dat de zijden $AB$ resp. $CD$ elkaar eerst snijden aan de bovenzijde van de figuur en op een bepaald moment elkaar gaan snijden aan de onderzijde van mijn figuur.
Er moet dus een punt $E$ aan te wijzen zijn zodanig dat na
het aanbrengen van de diagonalen, de zijden $AB$ en $CD$ effectief evenwijdig zijn. In principe volstaat het dan nog $B$ en $C$ te verbinden om het gevraagde trapezium te bekomen.

VRAAG: Hoe kan ik nu dat punt $E$, gelegen op $(K)$, er uit filteren, zodanig dat ik achteraf een punt $B$ op $(K1)$ resp. een punt $C$ op $(K2)$ verkrijg, waarbij $AB$ en $CD$ evenwijdig zijn?????

Hopelijk kom ik in aanmerking op een antwoord op deze vraag. Bedankt voor uw eventuele tussenkomst!

Yves De Racker
14-3-2016

Antwoord

Hallo Yves,

Ik dacht zelf aan een wat andere benadering.

Ik ga er even van uit dat de gegeven hoek $\alpha$ stomp is, vervang hem anders het complement $180^o - \alpha$. Construeer eerst een driehoek $PQR$ met:

$PR$ is nu groter dan de grootst mogelijke zijde die je met die twee diagonalen kan opspannen - je hebt als het ware een trapezium met een "zijde" QQ van lengte nul. Nu kun je het punt $S$ op $PR$ zodanig kiezen dat $PS$ de lengte heeft van de gegeven zijde. Laat vervolgens $T$ het punt zijn zodat $SQRT$ een parallellogram is. Dat betekent dat $ST//QR$, $TQ//SR(=PR)$ en $ST=QR=d_2$.

Dan voldoet $PSQT$ aan de voorwaarden van het trapezium dat moet worden geconstrueerd.

Met vriendelijke groet,

FvL
14-3-2016


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#77899 - Vlakkemeetkunde - Docent