Hoi,
Ik zit met een vraag waarbij ik de raaklijn van een indifferentiekromme op moet stellen. De formule hierbij is U(x,y)=x2y. Vervolgens wordt er gevraagd wat de vergelijking van de raaklijn is in het punt (x,y) = (2,2). Ik snap hoe ik dit op moet lossen door y naar het LL te halen en x naar het RL, maar in de uitwerkingen lijkt dit niet te gebeuren. Wat er hier namelijk gebeurt:
- eerst wordt differentiatie toegepast, met als resultaat 2xydx + x2dy = 0.
- vervolgens dy/dx=-2y/x
- in (2,2) dy/dx(2)= -2
- Vanaf hier snap ik het niet meer, want dan wordt er plotseling geschreven: 'de vergelijking van de raaklijn aan de indifferentiekromme in het punt (2,2) is y-2=-2(x-2)'. Ik snap niet hoe deze stap ineens tot stand komt. Kan iemand me dit uitleggen?Stijn Verhoeven
10-8-2014
De lijn door het punt (a,b) met richtingscoëfficient m heeft vergelijking:
y-b=m·(x-a).
Ga maar na.
1) heeft deze lijn rico m? Ja toch?
2) Gaat hij door (a,b)? Ja toch?
hk
10-8-2014
#73660 - Differentiëren - Student universiteit België