WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Re: Vectorruimte

Dus dan moet je lineaire combinaties nemen van deze vectoren?

vb. a·(1,0,0,...)+b·(0,1,0,...)+c·(0,0,1,...)

Ik denk dat ik het nog niet zo goed snap. Zou u een concreet voorbeeld kunnen geven? Bedankt!

Anon
23-2-2013

Antwoord

Je geeft zelf al een voorbeeld: elke rij die vanaf de vierde term nul is is een lineaire combinatie van $\mathbf{e}_1$, $\mathbf{e}_2$ en $\mathbf{e}_3$. Algemeen: als $\mathbf{x}$ een rij is en $x_n=0$ foor $n>m$ dan geldt
$$
\mathbf{x}=x_1\mathbf{e}_1+\cdots +x_m\mathbf{e}_m
$$

kphart
26-2-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#69766 - Lineaire algebra - Student universiteit België