WisFaq!

\require{AMSmath} geprint op dinsdag 23 april 2024

Vergelijking oplossen

Hallo,

Ik zit met een vraag over de volgende uitwerking:

y' - y = 4
y'e-t - ye-t = 4e-t
(ye-t)' = 4e-t
ye-t = 4e-t dt = -4e-t + c
y = -4 + cet

Mijn vraag is waarom y'e-t - ye-t als (ye-t)' geschreven kan worden.

Ook is me niet helemaal duidelijk hoe de integraal wordt opgelost.

Kunnen jullie mij hiermee helpen?

Fred
14-9-2012

Antwoord

Je eerste vraag volgt uit de product regel bij differentieren. (afgeleide van de eerste vermenigvuldigd met de tweede, plus de afgeleide van de tweede vermenigvuldigd met de eerste) (in wiskundige notatie: (fg)'=f'g+g'f
In dit geval: (ye-t)'= (y)'e-t +y(e-t)'= y'e-t+-1ye-t
= y'e-t - ye-t

De integraal wordt als volgt opgelost:
De primitieve van 4e-t moet worden gegeven. van 4et zou dit gewoon 4et +c zijn (definitie van ex). Er staat echter e-1t, dus moet je voor de -1 gaan compenseren. Dus je deelt door -1. Dus je krijgt: -4e-t +c (als er bijvoorbeeld 4e-2t had gestaan moest je delen door -2, dan kreeg je dus -2e-2t)
Hopelijk is het zo duidelijk.
Met vriendelijke groet,
Bart

bs
14-9-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#68389 - Differentiaalvergelijking - Student hbo