WisFaq!

\require{AMSmath} geprint op vrijdag 25 juni 2021

2e orde differentiaalvergelijking

Ik heb hier een 2e orde differentiaalvergelijking

Y'' + 25Y = C

De oplossing hiervan blijkt te zijn Y = Asin(5t)+Bcos(5t)+ C/25

De sinus- en cosinusterm begrijp ik, want dat is de homogene oplossing. Echter de C/25 term, waar halen we die vandaan? Ik zie wel dat die klopt als je hem invult, maar hoe verzin ik dit?

Groeten Bas

Bas Vink
14-5-2012

Antwoord

Beste Bas,

Bij dit type differentiaalvergelijking (lineair met constante coŽfficiŽnten) en een rechterlid dat een constante is, kan je voor de particuliere oplossing een functie voorstellen die zelf ook een constante is; dus Y(t) = K met K een reŽel getal.
Om de waarde van K te bepalen zodat deze aan de differentiaalvergelijking voldoet, kan je het gewoon invullen:

K'' + 25.K = C
25.K = C
K = C/25

Een particuliere oplossing is dus Y = C/25 en de som van de homogene met deze particuliere oplossing vormt de volledige oplossing.

mvg,
Tom

td
14-5-2012


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#67579 - Differentiaalvergelijking - Student universiteit