Ik zit met de volgende 2 partiële integralen, waar ik me blind op staar.Ik begrijp niet hoe ze er aankomen, ik weet wel wat ik moet doen qua procedure, maar ik zie ergens iets over het hoofd. Ik selecteer u en leid deze af, daarna bepaal ik dv en neem de integraal met v als resultaat en doe ik uv - integraal vdu
- integraal x3ex²dx met als uitkomst 1/2 x2 ex² - 1/2 ex² +c
- integraal sin2(x) dx met als uitkomst -1/4 sin(2x) + x/2 + c
Graag nogmaals uw hulp, ik zit op 30 augustus met een herexamen...
Hartelijk dankrobert Leunis
11-8-2011
Bij de eerste integraal is het een goed idee om partiëel te integreren, maar dan wel eerst even de substitutiemethode hanteren
$
\eqalign{
& \int {x^3 e^{x^2 } } dx = \cr
& \int {\frac{1}
{2}x^2 } \cdot e^{x^2 } \cdot 2x\,\,dx = \cr
& \int {\frac{1}
{2}x^2 } \cdot e^{x^2 } d\left( {x^2 } \right) = \cr
& \int {\frac{1}
{2}u \cdot e^u } du \cr}
$
Nu kan je verder met partiële integratie!
Bij f(x)=sin2(x) kan je beter gebruik maken van de formules voor de dubbele hoek. Zie Primitiveren.
Hopelijk helpt dat. Anders maar verder vragen!
WvR
11-8-2011
#65483 - Integreren - Student Hoger Onderwijs België