stel (x-2)=2sin (t) met t element van {-pie/2 , pie/2}
x=2sin (t)+2
dx=2cos (t) dt
√22-(x-2)2=√224sin2(t)=2cos (t)
t= bgsin (x-2)/2
DUS
=$\int{}$2cos (t) maal 2cos (t) dt
=4 $\int{}$ cos2(t)dt
=2(t+sintcost)+c
=2t+2sintcost+x
=2bgsin (x-2/2)+2(x-2/2)maal √4x-x2/2 + c
maar dit klopt niet met de oplossing
6bgsin (x-2/2)-1/2(x+6)√4x-x2 +cLiese
21-2-2011
Beste Liese,
Hoe kom je aan die integraal onder 'dus'...? Volgens mij vergeet je de x2 (om te zetten naar t) in de oorspronkelijke teller.
Verder valt de noemer net weg tegen dx = 2cos(t)dt, in plaats van vermenigvuldigen - die worteluitdrukking stond immers in de noemer.
mvg,
Tom
td
21-2-2011
#64362 - Integreren - 3de graad ASO