Weet iemand hoe je volgende dv verder uitwerkt met de laplace methode.
y'''(t)-2y''(t)-14y'(t)+40y(t)=et-2·e^(3t)
met volgende beginvoorwaarden
y'''(0)=0
y''(0)=1
y'(0)=2
deze zijn echter zelf gekozen
na laplacetransformatie krijg ik:
Y(s)[s3-2s2-14s-40]-s=(1/(s-1))-(2/(s-3))
misschien kan het kiezen van andere beginvoorwaarden het gemakkelijker maken ?
De nulmakers methode heb ik al uitgerekend.
hierbij kom ik uit op y(t)=c1·e^(-4t)+c2·e^(3t)·sin(t)+c3·e^(3t)cos(t)+(1/25)·et-(2/7)·e^(3t)
met c1=-137/1750
c2=133/250
c3=81/250
Alvast bedankt
Julie
Julie
14-12-2010
Andere beginvoorwaarden kiezen is natuurlijk geen optie als dat nou net de gewenste beginvoorwaarden zijn.
Er zit niets anders op dan de vergelijking naar Y(s) op te lossen, dan Y(s) breuk te splitsen en vervolgens terug te transformeren.
kphart
20-12-2010
#63824 - Differentiaalvergelijking - Student Hoger Onderwijs België