WisFaq!

\require{AMSmath} geprint op vrijdag 1 november 2024

Convergentie of divergentie

Ik heb de reek $\sum$nn/n! de vraag is of de somrij divergeert al dan niet convergeert. Ik doe als volgt met de methode van d'Alembert:

(n+1)n+1/ (n+1)! · n!/ nn als dit $>$1 div $<$1 conv =1 onbekend. Toch?

(n+1)n · (n+1)·n!) / (n+1)·n!·nn dat is
n+1)n / nn = ((n+1)/n)n = (1+1/n)n limiet = en $>$1 dus divergeert.

Doe ik dit op de juiste manier.

2e vraag: moet ik niet eigenlijk eerst bewijzen dat de limiet van rij Nn/n! gelijk aan 0 is. Dat hij voldoet aan het limietkenmerk en zo ja hoe doe ik dat in dit geval?

mvg Jan.

jan hendrikx
10-10-2009

Antwoord

Beste Jan,

Je methode met het criterium van d'Alembert is prima, je limiet klopt en vermits e 1, is de reeks dus divergent.

Je had inderdaad eerst kunnen nagaan of de algemene term nn/n! wel naar 0 gaat. De teller bestaat uit n factoren van n, de noemer is n(n-1)(n-2)...1, ook n factoren. Dus...?

mvg,
Tom

td
10-10-2009


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#60410 - Rijen en reeksen - Student hbo