Op hoeveel manieren kan je een groep van 20 personen indelen in 4 deelgroepen, waarbij er in elke deelgroep minstens 1 persoon zit. Elke deelgroep heeft een aparte taak te vervullen.
Sam Gobbaerts
19-1-2009
Wat je in feite moet tellen zijn de functies van {1,2,...,20} naar {1,2,3,4} die alle waarden aannemen. Dat gaat het snelst door naar het complement te kijken: voor i=1,2,3,4 schrijf je Ai={f:i zit niet in het beeld van f}; dus A1 bestaat uit de functies die van {1,2,...,20} naar {2,3,4} gaan en dat zijn er 320. Het complement van onze gezochte verzameling is dan de vereniging van de vier Ai. Het principe van inclusie-exclusie (zie de link hieronder voor de formule) impliceert dat het aantal elementen van die vereniging gelijk is aan 4·320-6·220+4·120. Het gevraagde antwoord is dan dit getal afgetrokken van het totaal aantal functies, dus 420-(4·320-6·220+4·120).Zie Wikipedia: Inclusion-exclusion principle [http://en.wikipedia.org/wiki/Inclusion-exclusion_principle]
kphart
21-1-2009
#58002 - Telproblemen - 3de graad ASO