WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Integreren door substitutie

Graag had ik wat hulp bij volgende integralen, de opdracht is om ze te integreren via substitutie.

dx/x·$\sqrt{ }$(x2 + 5x + 1)
dx/(1+x2)2

Hanne
4-10-2008

Antwoord

Hanne,
Eerste integraal.Voor dit soort is de volgende substitutie altijd zinvol: stel
$\sqrt{ }$(x2+5x+1)=x+t,dus 5x+1=2xt+t2 zodat x=(1-t2)/(2t-5). Differentieëren van de eerste uitdrukking geeft(2x+5)/2$\sqrt{ }$(x2+5x+1)= dx+dt, zodat
(2x+5-2$\sqrt{ }$(x2+5x+1))dx/2$\sqrt{ }$(x2+5x+1))=dt, dus
(5-2t)dx/2$\sqrt{ }$(x2+5x+1)=dt, zodat dx/$\sqrt{ }$(x2+5x+1)=2dt/(5-2t).
Invullen in de integraal geeft 2$\int{}$dt/(1-t2). Mooier kan toch niet.

Tweede integraal: stel x=tan $\alpha$.Verder zelf doen.

kn
5-10-2008


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#56652 - Integreren - Student universiteit België