WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Berekening van kans bij kaarten trekken

Je trekt op een willekeurige manier, zonder teruglegging, 13 kaarten uit 52. Hoe groot is dan de kans dat er minstens 3 azen bij zijn? Minstens drie, dat betekent 3 of 4 dus moet ik het probleem in twee stukken aanpakken, niet? En dat we combinaties berekenen is ook duidelijk, maar hoe gaat het dan verder...? Bedankt voor de hulp!

Anneke
28-8-2007

Antwoord

Hoi Anneke,

Dit een geval van de hypergeometrische verdeling
Ik noem de combinatie "n boven k" even C(n,k).
13 kaarten uit 52 trekken kan op C(52,13) manieren. Dit is het totaal aantal manieren.
Gunstige manieren zijn: 3 azen of 4 azen.
Het aantal gunstige manieren is dan C(4,3)*C(48,10)+C(4,4)*C(48,9)
De kans is dus (C(4,3)*C(48,10)+C(4,4)*C(48,9))/C(52,13)


hk
28-8-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#51896 - Statistiek - 3de graad ASO