WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Permutaties - Commutatieve groep

Ik heb een probleempje met een oefening:

Beschouw de verzameling S3 van alle permutaties {1,2,3} en bewijs dat S3, o een commutatieve groep is. Is deze groep abels?

Ik begrijp niet eens wat permutaties zijn, en hoe ik dat zou kunnen bewijzen.

Alvast bedankt,

Jeroen
2-2-2007

Antwoord

Een permutatie is een 1-1 afbeelding van de verzameling {1,2,3} naar zichzelf. Er zijn dus 3! van deze afbeeldingen. Bewijs nu dat de verzameling S3 van deze afbeeldingen een groep vormt.

hmmm. commutatief betekent hetzelfde als abels, toch?

Met vriendelijke groet
JaDeX

jadex
2-2-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#48989 - Algebra - 3de graad ASO