WisFaq!

\require{AMSmath} geprint op zondag 28 april 2024

Kleinste reele

Bepaal het kleinste reele getal M zodanig dat voor alle reele getallen a, b en c de volgende ongelijkheid geldt:

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| M(a2 + b2 + c2)2

jop
20-1-2007

Antwoord

Die M is gelijk aan het maximum K van de functie f(x,y,z)=|xy(x2-y2)+yz(y2-z2)+zx(z2-x2)| onder de nevenvoorwaarde x2+y2+z2=1.
Dat maximum bestaat want f is continu en de nevenvoorwaarde bepaalt een gesloten en begrensde verzameling. Bewijs dat K voldoet: ten eerste, als K=f(p,q,r) dan geldt f(p,q,r)=K(p2+q2+r2)2, omdat p2+q2+r2=1 (dit betekent dat geen getal kleiner dan K voldoet). Ten tweede, neem (a,b,c) willekeurig, schrijf t=(a2+b2+c2)1/2 en bekijk (x,y,z)=(a/t,b/t,c/t); dan x2+y2+z2=1, dus
f(x,y,z)K. Maar f(x,y,z)=f(a,b,c)/t4, dus f(a,b,c)Kt4=K(a2+b2+c2)2, dus K zelf voldoet. Conclusie K is de gevraagde M.
Je kunt K bepalen met behulp van de multiplicatorenmethode van Euler en Lagrange.

kphart
22-1-2007


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#48734 - Logica - 2de graad ASO