WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Aantonen Formules

Goede dag.
Ik ben bezig met het bestuderen van de fourrierreeksen, en zit aan het berekenen van de Foourriercoëfficienten van enkele bijzondere functies.
Ik heb namelijk een functie met verschuivingssymmetrie, dit wil zeggen dat f(t)= - f(t+T/2).
als dit zo is dan krijgen we: (dit is hetgene dat ik niet kan verklaren)

B0 = 0
An = 0 n element van alle natuurlijke getallen
B2n = 0 uitgezonderd 0


Ik weet dat:
B0 = (2/T) · integraal (T boven en 0 onder) van (f(t))dt
An = (2/T) · integraal (T boven en 0 onder) van (f(t)·sin(nωt))dt
en
Bn = An = (2/T) · integraal (T boven en 0 onder) van (f(t)·cos(nωt))dt
met element van de natuurlijke getallen zonder 0

bart
21-11-2006

Antwoord

Doe het eerst eens voor het geval T=2$\pi$ (en dus $\omega$=1). Dan heb je het over functies die voldoen aan f(t)=-f(t+$\pi$). Splits de integraal telkens in twee integralen: van 0 naar $\pi$ en van $\pi$ tot 2$\pi$; met behulp van de eigenschap van je functies, en van sin(nt) en cos(nt), kun je laten zien dat die integralen telkens tegen elkaar wegvallen.

kphart
22-11-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#47728 - Integreren - Overige TSO-BSO