WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Integreren van 1/vkv(5-2x²)

Hallo,

Ik ben hier enkele oefeningen ivm met integreren door substitutie op te lossen, maar ik zit vast bij een oefening:
1/Ö(5-2x2)

Het probleem is dat ik de u-waarde niet vind..
waardoor ik natuurlijk de oefening niet verder kan oplossen.

Ik denk wel dat we gaan naar een arcsin.

Bert
1-10-2006

Antwoord

1/Ö(5-2x2) = 1/Ö5(1-2/5x2) = 1/Ö5.1/Ö(1-2/5x2)
= 1/Ö5.1/Ö(1-(Ö(2/5)x)2)

dit heeft de gedaante van 1/Ö(1-x2)
Waarvan de primitieve arcsin(x) is.

welnu, bij primitiveren van 1/Ö5.1/Ö(1-(Ö(2/5)x)2) is de 1/Ö5 niks anders dan een constante;
Onze eerste 'gok' voor een primitieve zou dus zijn:

F(x)=1/Ö5.arcsin(Ö(2/5)x)
Echter, als we hier bij wijze van controle weer de afgeleide zouden nemen, dan komen we uit op: (kettingregel)
F'(x)=1/Ö5.1/Ö(1-(Ö(2/5)x)2).Ö(2/5)

Dus onze gok voor de primitieve was bijna goed. het was alleen een factor
Ö(2/5) teVEEL.
dus de primitieve moet zijn
F(x)= Ö(5/2).1/Ö5.1/Ö(1-(Ö(2/5)x)2) = ..
(vereenvoudig zelf)

groetjes,
martijn

mg
1-10-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#46871 - Integreren - 3de graad ASO