WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Operatie op lagrangiaan

Hallo, ik zit met een probleem, er wordt een operatie op de lagrangiaan uitgevoerd die ik niet versta, nu is dit fyisca maar omdat het een wiskundige operatie is dacht ik dat ik me hiertoe zou kunnen wenden

Met zegt dat voor het behoud van energie: dL/dt = 0,
Expliciet geeft dit

dL/dt = å(JL/Jr . dr/dt + ....

dL/dt = å(d/dt . JL/Jv) . v + ...

Deze overstap snap ik niet, hoe kan men de plaatsvector ''r'' nu vervangen door de snelheidsvector ''v''
dL/dt

winny
25-3-2006

Antwoord

Beste Winny,

De dr/dt die er al stond is precies v, deze breng je buiten.
JL/Jr kan je volgens de kettingregel schrijven als JL/Jv*Jv/Jr maar in deze laatste factor waarbij we de snelheid afleiden naar de plaats is het niet langer een partiële afgeleide maar de 'gewone', dus: JL/Jv*dv/dr.

Maar vermits v = dr/dt heb je dat dv/dr = (dr/dt)/dr = d/dt dr/dr = d/dt.

Dus: (d/dt JL/Jv).dr/dt = (d/dt JL/Jv).v

mvg,
Tom

td
25-3-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#44506 - Differentiëren - Student universiteit België