WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Oppervlakte van een kromme

Ik moet de oppervlakte bepalen van volgende kromme (in poolcoördinaten):

r = sinq + 1

S
= 1/20ò2p(sinq+1)2dq = 1/20ò2p(sin2q+2sinq+1)dq = 1/2[1/2(q+1/2sin2q)-2cosq+q]02p Na dit verder uit te rekenen kom ik uit op een oppervlakte van 3p/2. Dit lijkt me wel mogelijk.

Ik heb de kromme ook eens getekend, deze lijkt op een omgedraaid hart, kan dat ?

Ik wou gewoon eens checken of ik goed bezig was of niet.

Bedankt.

Stef
25-1-2006

Antwoord

Beste Stef,

De oppervlakte 3p/2 lijkt me inderdaad te kloppen en de grafiek is inderdaad een hartvorm, het is dan ook de vergelijking van een zogenaamde cardioïde.

Goed bezig !

mvg,
Tom

td
25-1-2006


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#43268 - Integreren - Student universiteit België