WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Inhoud omwentelingslichaam

Hoi,

Ik heb een functie g(x)=sinx met domein [0,p] waarvan het gebied ingesloten door de grafiek en de x-as om de x-as wordt gewenteld. De integraal die daar bij hoort is dan dus pòg(x)2dx.
Ik wil nu de inhoud berekenen door g(x)2 te primitiveren, maar daarvoor moet ik eerst aantonen dat sin2x = 1/2-1/2cos2x. Hoe toon ik dit aan en hoe primitiveer ik dan sin2x (of 1/2-1/2cos2x)?

Henk
19-10-2005

Antwoord

je weet waarschijnlijk dat cos(2x)=cos2(x)-sin2(x) ? Als je dat niet weet kan je in de formules voor cos(x+y)=... y=x nemen en dan rolt het eruit. Ik neem aan dat ik die somformules niet moet bewijzen?
Je kent ook de grond formule cos2(x)+sin2(x)=1

Als je nu met die grondformule de cos2(x) wegwerkt uit de verdubbelingsformule (substitueer dus cos2(x)=1-sin2(x), en reken uit naar sin2(x), dan krijg je de gevraagde formule)

De primitieve van (1/2-1/2cos(2x)) kan je splitsen in:

ò1/2 dx -1/2 òcos(2x) dx

In de tweede integraal substitutie 2x=u
= x/2-1/2 ò cos(u)/2 du
=x/2-1/4 sin(2x)

Koen

km
19-10-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#40926 - Integreren - Leerling bovenbouw havo-vwo