Er zijn een aantal recepten op een lineaire DV van de vorm y’’(x) + a(x)y’(x) + b(x)y(x) = R(x) op te lossen. Bv. ‘Verlaging van de orde’ en ‘variatie van de constanten’.
Deze oplossingsmethodes gaan er echter van uit dat je reeds over één oplossing van de homogene vergelijking beschikt.
Nu is de vraag: bestaat er een recept om een die eerste oplossing te komen?
Alvast bedanktWerner Janssens
9-9-2005
Het antwoord is, helaas, nee.
De differentiaalvergelijking van Airy, y''(x)+x*y(x)=0, heeft wel oplossingen maar deze zijn niet in elementaire functies (e-macht. logaritme, sinus, cosinus, wortels, ...) uit te drukken.
kphart
9-9-2005
#40185 - Differentiaalvergelijking - Student universiteit België