WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Oplossen DV van tweede orde met veranderlijke coëfficiënten

Er zijn een aantal recepten op een lineaire DV van de vorm y’’(x) + a(x)y’(x) + b(x)y(x) = R(x) op te lossen. Bv. ‘Verlaging van de orde’ en ‘variatie van de constanten’.
Deze oplossingsmethodes gaan er echter van uit dat je reeds over één oplossing van de homogene vergelijking beschikt.
Nu is de vraag: bestaat er een recept om een die eerste oplossing te komen?
Alvast bedankt

Werner Janssens
9-9-2005

Antwoord

Het antwoord is, helaas, nee.
De differentiaalvergelijking van Airy, y''(x)+x*y(x)=0, heeft wel oplossingen maar deze zijn niet in elementaire functies (e-macht. logaritme, sinus, cosinus, wortels, ...) uit te drukken.

kphart
9-9-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#40185 - Differentiaalvergelijking - Student universiteit België