WisFaq!

\require{AMSmath} geprint op vrijdag 10 januari 2025

Inproduct met Grammatrix

hallo
uit mijn cursus:

een basis B={e1,...,en} voor vectorruimte V
g: VxV®K een inproduct op V
de Grammatrix G=(g(ei,ej)),i,j=1,...,n

we zien nu dat de Grammatrix het inproduct volledig bepaalt, namelijk
g(v,w)=g(åi xiei,yiei)
i,j=1n xiyjg(ei,ej)
=vt.G.w

- in de eerste stap vervangen we v en w door hun voorstelling als lineaire combinatie van de basisvectoren
- de tweede stap echter begrijp ik niet (vanwaar bv komt de j plots?)

kan iemand helpen?
met vriendelijk groeten
Tom

Tom
9-8-2005

Antwoord

Het helpt misschien als je het uitschrijft voor, zeg, het geval n=2 (of n=3).
Schrijf v=x1e1+x2e2 en w=y1e1+y2e2. Als je g(v,w) vervolgens uitwerkt krijg je vier termen: x1y1g(e1,e1)+x1y2g(e1,e2)+x2y1g(e2,e1)+x2y2g(e2,e2)
Hiervoor heb je twee sommatie-indices nodig: de i voor de x-en en de j voor de y-en.

kphart
9-8-2005


© 2001-2025 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#39891 - Lineaire algebra - Student universiteit België