WisFaq!

\require{AMSmath} geprint op vrijdag 10 januari 2025

Symmetrische matrix

De opdracht is als volgt:

Zij A een reële n*n-matrix. Toon aan dat eigenvectoren die behoren bij verschillende eigenwaarden loodrecht op elkaar staan.

Nu heb ik echt geen idee hoe ik hier aan moet beginnen...
Kan er iemand mij hier bij helpen?
Alvast bedankt,

Vriendelijke groetjes

Natalie
7-6-2005

Antwoord

Dag Natalie,

Stel eens dat de matrix A eigenwaarden l en m heeft, met eigenvectoren respectievelijk X en Y (ik gebruik hier even hoofdletters voor kolomvectoren), zodat XTY eigenlijk niks anders is dan het inproduct van beide vectoren.

We weten dat AY = mY en AX = lX, en omdat A symmetrisch is, als we dit laatste transponeren krijgen we XTA = lXT.

Dan geldt: lX,Y
= lXTY
= (XTA) Y
= XT (AY)
= XT mY
= mXTY
= mX,Y

En vermits we verondersteld hadden dat l¹m, volgt hieruit dat het inproduct van X en Y, nul is, of dus dat beide orthogonaal (loodrecht) zijn.

Groeten,
Christophe.

Christophe
7-6-2005


© 2001-2025 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#39033 - Lineaire algebra - Student universiteit België