WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Analytisch aantonen dat diagonalen vierkant loodrecht delen en even lang

Hallo

In een uitbreidingsopdracht moet je analytisch aantonen dat de diagonalen van een vierkant elkaar loodrecht middendoor delen en even lang zijn...

Ik heb dus een vierkant op een assenstelsel gezet
co(A)=(0,0)
co(B)=(x,0)
co(C)=(x,x)
co(D)=(0,x)

Dat loodrecht op elkaar staan kan ik wel aantonen. Via het bepalen van de rico van een rechte als 2 punten gegeven zijn. Rico AC=1 en rico BD=-1. Dus ze staan loodrecht op elkaar.

Maar hoe toon ik dan aan dat ze even lang zijn en elkaar middendoor delen (analytisch)?

Evelien
19-2-2005

Antwoord

Gelijke lengte?
Wellicht heb je iets aan de 'afstandsformule' van twee punten (a,b) en (p,q):
d = √( (a-p)2 + (b-q)2 )

Middendoor?
Wat zijn de coördinaten van het midden van AC en van het midden van BD?

Dan kom je er wel, denk ik!


dk
19-2-2005


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#34171 - Analytische meetkunde - 2de graad ASO