WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Hoeveel toppen heeft een functie?

Ik heb morgen toelatingsexamen voor de universiteit en zou het op prijs stelle als jullie mij kunnen helpen met het volgende:

de functie f:x-- 1/2x4 - 5/2x2 + 2 heeft hoeveel toppen?

hoop dat jullie snel willen antwoorden.

groetjes suzanne

Suzanne
11-8-2004

Antwoord

De term + 2 heeft geen invloed op de gedaante van de functie (verticale verschuiving).
We bekijken 'dus' de functie
g(x) = 1/(2x4) - 5/(2x2)
De afgeleide daarvan is dan:
g'(x) = -2/x5 + 5 /x3
Brengen we de beide termen in het rechter lid op de noemer x5, dan krijgen we
g'(x) = (-2)/x5 + (5x2)/x5 = (-2 + 5x2)/x5
Hieruit blijkt, dat de functie g (en dan ook de functie f) TWEE 'toppen' heeft.
Immers de functie g' heeft twee nulpunten, immers de teller is van de tweede graad.
Ik hoop dat je hiermee voldoende geholpen bent.
Succes morgen!!

dk
11-8-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#26533 - Differentiëren - Student hbo