WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Afgeleide expliciete functie

Stel dat de betrekking g(x,y)=0 expliciet kan geschreven worden als y=G(x). Waarom is dan G'(x)=-(dg(x,y)/dx)/(dg(x,y)/dy) ?

met vriendelijke groeten en dank bij voorbaat!

Bert Goossens
19-6-2004

Antwoord

Uit g(x,y) = 0 volgt gxdx + gydy = 0 Zo'n vorm wordt wel de totale differentiaal genoemd.
Hierbij bedoel ik met gx de partiële afgeleide naar x en analoog voor gy.

Hieruit haal je vrij eenvoudig dy/dx = -gx/gy

Als y echter expliciet te schrijven is als y = G(x), dan geldt ook y'= dy/dx = G'(x)
Je hebt nu voor dezelfde uitdrukking dy/dx twee verschillende vormen gevonden.
Gelijkstellen beantwoordt je vraag.

MBL
20-6-2004


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#25604 - Differentiëren - Student universiteit België