WisFaq!

\require{AMSmath} geprint op dinsdag 26 oktober 2021

Differentiatie van logaritme

haihai ,

Ik liep vast (nouja, niet helemaal) bij de volgende opdracht:

Differentieer f(x)=1/2log x∑2log x

Ik dacht dit te doen dmv de productregel:

f'(x)= (1/xLn1/2)(2log x)+(1/2log x)(1/xLn2

= 2logx/xLn1/2+1/2logx/xLn2

Klopt dit?

Mijn leraar had dit tijdens een les als volgt uitgelegd, maar dat snap ik nu niet meer, dus ik vroeg me af of jullie dit ook nog even konden uitleggen:

f(x)=1/2log x∑2log x
= -(2logx)2

f'(x)=-2∑2logx∑1/x

De afgeleide snap ik wel, maar de stap naar -(2logx)2 niet helemaal...

Nou, dat was het voorlopig weer :), alvast bedankt!

Groetjes,

Evelien
19-4-2004

Antwoord

maak gebruik van de regel
alogb = gloga/glogb

en omdat g willekeurig te kiezen is (althans 0 EN Ļ1)
kun je ook het grondtal e nemen.
Zoals je weet is een logaritme met grondtal e hetzelfde als ln.
Dus elogx is hetzelfde als lnx

Welnu: Pas dit toe op jouw probleem

1/2logx.2logx
= (lnx/ln(1/2)).(lnx/ln2)
= (lnx/ln(2-1)).(lnx/ln2)
= (lnx/-ln2).(lnx/ln2)
= -(lnx/ln2)2
= -(2logx)2
= -2log2x

Dit differentiŽren levert volgens de kettingregel:

[-(2logx)2]'
= -2.2logx.[2logx]'
= -2.2logx.(1/xln2)

Dus net ietsje anders dan het antwoord wat jij had opgeschreven. Hou die kettingregel altijd in de gaten, dat is altijd weer HET addertje onder het gras bij differentiŽren. ;-)

groeten,
martijn

mg
19-4-2004


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#22934 - Logaritmen - Leerling bovenbouw havo-vwo