Ik moet het allemaal kunnen.. maar het begint stillaan een soep te worden.
f(x) = 2x2
afgeleide: f'(x)= 4x
differentiaal: df(x) = 4x Dx of 4x dx
raar ik dacht dat afgeleide was:
lim/Lx®0f(x+Dx) - f(x/Lx
als differentiaal dan maal Lx is hebben we dan niet weer de different? f(x+Lx)-f(x)
Ik zit waarschijnlijk hopen fouten te maken.. ik schaam meDavy Jans
14-1-2004
Per definitie is de afgeleide de limiet van het zogenaamde differentiequotiënt. In formule f'(x) = Lim Df/Dx waarbij uiteraard Dx ® 0
Het resultaat wordt simpelweg geschreven als f'(x), maar ook wel als dy/dx
Kortom : dy/dx = f'(x) en dat is weer te schrijven als dy = f'(x).dx
Vervang je hier nu weer y door f(x), dan krijg je de vorm df(x) = f'(x).dx
Het is dus vooral een spel met symbolen, en dat is in het begin even wennen.
Nu toegepast op y = 2x2.
De simpelste schrijfwijze is en blijft f'(x) = 4x.
De tweede mogelijkheid is df(x)/dx = 4x of df(x) = 4x.dx of d[2x2] = 4xdx
Om de verwarring compleet te maken : er zijn nog wel een paar andere notaties in omloop, maar die zie je vrij weinig. In specialistische gebieden heeft men nog weleens de neiging om eigen notaties te kiezen.
MBL
14-1-2004
#18875 - Differentiëren - Student Hoger Onderwijs België