WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Geef en bewijs deze standaardafgeleiden

d/dx(cos x) = ?

of indien jullie "hoesting" hebben, zouden dat willen doen van alle standaardafgeleiden? :)

erg bedankt

amir
11-8-2003

Antwoord

Een bewijs van de afgeleide van de sinusfunctie heb je waarschijnlijk gezien in je boek. Er wordt gebruik gemaakt van het feit dat lim(x-0) sin(x)/x = 1.

Je zou een heel gelijkaardig bewijs kunnen opstellen voor de afgeleide van cos(x), maar veel eenvoudiger is het om dit geval te herleiden tot het vorige met behulp van

cos(x) = sin(p/2-x)

De kettingregel leert dan dat

d/dx cos(x) = -cos(p/2-x) = -sin(x)

De afgeleide van de tangens volgt nu uit toepassing van de quotientregel op sin(x)/cos(x).

cl
11-8-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#13361 - Differentiaalvergelijking - Student Hoger Onderwijs België