WisFaq!

\require{AMSmath} geprint op zondag 22 december 2024

Eigenvectoren

Stel dat x1 en x2 eigenvectoren zijn van de (nxn)-matrix A over het veld K
c1, c2 Î K/{0}. Zoek de voorwaarde opdat x=c1x1+c2x2 een eigenvector is van A.

Koen Mahieu
11-7-2003

Antwoord

Nogmaals hallo Koen,

Ax1 = l1x1
Ax2 = l2x2

A(c1x1+c2x2) = c1l1x1 + c2l2x2
= m(c1x1+c2x2) (dit is de voorwaarde opdat c1x1+c2x2 een eigenvector is)
Als en alleen als m=l1=l2.
Dus de voorwaarde is dat de eigenvectoren dezelfde eigenwaarden hebben. En waarschijnlijk heb je dat in de theorie ook wel gezien: als een eigenwaarde multipliciteit meer dan 1 heeft, en er zijn twee lineair onafhankelijke eigenvectoren, dan heb je een eigenruimte, dus bv. een 'vlak' van eigenvectoren.

Christophe.

Christophe
11-7-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#13082 - Lineaire algebra - Student universiteit België