WisFaq!

\require{AMSmath} geprint op woensdag 23 september 2020

Formule voor de som van de delers

Hallo, ik heb een vraag over delers van getallen. Is er een trucje of formule bekend waarmee je van elke getal de som van de delers, het aantal delers en/of de delers op zich kunt uitrekenen? Alsvast hartelijk dank!

Pim van Hooydonk
14-5-2003

Antwoord

De delers op zich vind je door het getal te ontbinden in priemfactoren, en dan te spelen met alle mogelijke exponenten. Hiermee weet je meteen ook hoeveel delers er zijn. Want als

x = p1q1...pnqn

dan is elke deler van x van de vorm

d = p1r1...pnrn met 0 $\leq$ rj $\leq$ qj

en omgekeerd. Het aantal mogelijke (positieve) delers is dan

$\tau$(x) = (1+q1)...(1+qn)

Nu je de vorm kent van de delers van x kan je ook de som $\sigma$ van de delers bepalen. Toon eerst aan dat als ggd(a,b)=1, dat dan $\sigma$(ab)=$\sigma$(a)$\sigma$(b). In combinatie met de uitdrukking voor $\sigma$ voor machten van priemgetallen ($\to$ eindige meetkundige rij) bekom je uiteindelijk

$\sigma$(x) = [p1q1+1-1]/[p1-1]...[pnqn+1-1]/[pn-1]

Zie Delers [http://www.staff.science.uu.nl/~beuke106/getaltheorie/Hoofdstuk4.pdf]

cl
15-5-2003


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#11033 - Getallen - Docent