Machten
|
Logaritmen
|
M1
$a^{0}=1$
|
L0
${}^a\log (b) + {}^a\log (c) = {}^a\log (b \cdot c)$
${}^a\log (b) - {}^a\log (c) = {}^a\log (\frac{b}{c})$
|
M2
$a^{1}=a$
|
L1
$\begin{array}{l}
{}^a\log (b) = c \Rightarrow a^c = b \\
(a > 0 \wedge a \ne 1 \wedge b > 0) \\
\end{array}$
|
M3
$a^{p}\cdot a^{q}=a^{p+q}$
|
L2
$\begin{array}{l}
{}^a\log \left( b \right) = \frac{{\log \left( b \right)}}{{\log \left( a \right)}} \\
(zie\,\,*) \\
\end{array}$
|
M4
$a^{p}:a^{q}=a^{p-q}$
|
L3
$^a \log \left( {b^p } \right) = p \cdot {}^a\log (b)$
|
M5
$(a^{p})^{q}=a^{p\cdot q}$
|
L4
$a^{{}^a\log (b)} = b$
|
M6
$(a\cdot b)^{p}=a^{p}\cdot b^{p}$
|
*)
L2 uitgebreid
$\begin{array}{l}
{}^a\log \left( b \right) = \frac{{{}^g\log \left( b \right)}}{{{}^g\log \left( a \right)}} \\
(g > 0) \\
\end{array}$
|
M7
$a^{-p}=\frac{1}{a^{p}}$
|
|
M8
$a^{\frac{1}{2}}=\sqrt{a}$
$(a\ge 0)$
|
|
M9
$\eqalign{
& {a^{\frac{p}{q}}} = \root q \of {{a^p}} \cr
& (a \ge 0) \cr} $
|
© 2016 WisFaq.nl
|