De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}


Voorbeeld 2

$
\eqalign{
  & f(x) = \frac{{x^2  + 2x - 12}}
{{3x(x + 2)}}  \cr
  & f'(x) = \frac{{\left( {2x + 2} \right)\left( {3x(x + 2)} \right) - \left( {x^2  + 2x - 12} \right)\left( {6x + 6} \right)}}
{{\left( {3x\left( {x + 2} \right)} \right)^2 }}  \cr
  & f'(x) = \frac{{6\left( {x + 1} \right)\left( {x(x + 2)} \right) - 6\left( {x^2  + 2x - 12} \right)\left( {x + 1} \right)}}
{{9\left( {x\left( {x + 2} \right)} \right)^2 }}  \cr
  & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x(x + 2)} \right) - \left( {x^2  + 2x - 12} \right)} \right)}}
{{9\left( {x\left( {x + 2} \right)} \right)^2 }}  \cr
  & f'(x) = \frac{{6\left( {x + 1} \right)\left( {\left( {x^2  + 2x} \right) - \left( {x^2  + 2x - 12} \right)} \right)}}
{{9\left( {x\left( {x + 2} \right)} \right)^2 }}  \cr
  & f'(x) = \frac{{72\left( {x + 1} \right)}}
{{9\left( {x\left( {x + 2} \right)} \right)^2 }}  \cr
  & f'(x) = \frac{{8\left( {x + 1} \right)}}
{{x^2 \left( {x + 2} \right)^2 }} \cr}
$


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3