\require{AMSmath} Standaardlimieten Enkele standaardlimieten: $ \eqalign{ & \mathop {\lim }\limits_{x \downarrow 0} x \cdot \ln x = 0{\text{ }} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{e^x - 1}} {x} = 1 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to \infty } \frac{{{\text{lnx}}}} {{\text{x}}} = 0 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{1}}} \frac{{{\text{lnx}}}} {{{\text{x - 1}}}} = 1 \cr} $ Re: Limieten berekenen ©2004-2024 WisFaq
\require{AMSmath}
Enkele standaardlimieten: $ \eqalign{ & \mathop {\lim }\limits_{x \downarrow 0} x \cdot \ln x = 0{\text{ }} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{e^x - 1}} {x} = 1 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to \infty } \frac{{{\text{lnx}}}} {{\text{x}}} = 0 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{1}}} \frac{{{\text{lnx}}}} {{{\text{x - 1}}}} = 1 \cr} $ Re: Limieten berekenen
Enkele standaardlimieten:
$ \eqalign{ & \mathop {\lim }\limits_{x \downarrow 0} x \cdot \ln x = 0{\text{ }} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{e^x - 1}} {x} = 1 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to \infty } \frac{{{\text{lnx}}}} {{\text{x}}} = 0 \cr & \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{1}}} \frac{{{\text{lnx}}}} {{{\text{x - 1}}}} = 1 \cr} $
©2004-2024 WisFaq