$
\eqalign{
& \int {{1 \over {\cos ^6 x}}} \,dx = \int {{1 \over {\cos ^4 x}} \cdot {1 \over {\cos ^2 x}}} \,dx = \int {\left( {{1 \over {\cos ^2 x}}} \right)^2 \cdot {1 \over {\cos ^2 x}}} \,dx \cr
& Wat\,\,nu? \cr
& \tan ^2 x = {{\sin ^2 x} \over {\cos ^2 x}} = {{1 - \cos ^2 x} \over {\cos ^2 x}} = {1 \over {\cos ^2 x}} - 1 \Rightarrow {1 \over {\cos ^2 x}} = \tan ^2 x + 1 \cr
& Geeft: \cr
& \int {\left( {\tan ^2 x + 1} \right)^2 \cdot } \,d(\tan x)\buildrel {u = \tan x} \over
\longrightarrow \int {\left( {u^2 + 1} \right)^2 du} \cr}
$
Zie ook Integralen of Goniometrische integraal berekenen