Loading jsMath...



Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs van de productregel

In Almering e.a. (6de druk) lezen we:

\eqalign{   & \left[ {f(a) \cdot g(a)} \right]^'  =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{\left( {f \cdot g} \right)\left( x \right) - \left( {f \cdot g} \right)\left( a \right)}} {{x - a}} =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) \cdot g\left( x \right) - f\left( a \right) \cdot g\left( a \right)}} {{x - a}} =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) \cdot g\left( x \right) - f\left( a \right) \cdot g\left( a \right) - f\left( a \right) \cdot g\left( x \right) + f\left( a \right) \cdot g\left( x \right)}} {{x - a}} =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) \cdot g\left( x \right) - f\left( a \right) \cdot g\left( x \right) - f\left( a \right) \cdot g\left( a \right) + f\left( a \right) \cdot g\left( x \right)}} {{x - a}} =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{\left( {f\left( x \right) - f\left( a \right)} \right) \cdot g\left( x \right) + f\left( a \right) \cdot \left( {g\left( x \right) - g\left( a \right)} \right)}} {{x - a}} =   \cr   & \mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}} {{x - a}}\mathop {\lim }\limits_{x \to a} g\left( x \right) + f\left( a \right) \cdot \mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right) - g\left( a \right)}} {{x - a}} =   \cr   & f'\left( a \right) \cdot g\left( a \right) + f\left( a \right) \cdot g'\left( a \right) \cr}


©2004-2025 WisFaq